Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images
نویسندگان
چکیده
In this paper, we propose a classification system based on a multiple-classifier architecture, which is aimed at updating land-cover maps by using multisensor and/or multisource remote-sensing images. The proposed system is composed of an ensemble of classifiers that, once trained in a supervised way on a specific image of a given area, can be retrained in an unsupervised way to classify a new image of the considered site. In this context, two techniques are presented for the unsupervised updating of the parameters of a maximum-likelihood classifier and a radial basis function neural-network classifier, on the basis of the distribution of the new image to be classified. Experimental results carried out on a multitemporal and multisource remote-sensing data set confirm the effectiveness of the proposed system. 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images
In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...
متن کاملA multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps
A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote sensing images. Such a system is able to address the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal dataset) no ground truth information is available. The system is composed of an...
متن کاملA partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images
A partially unsupervised approach to the classification of multitemporal remote-sensing images is presented. Such an approach allows the automatic classification of a remote-sensing image for which training data are not available, drawing on the information derived from an image acquired in the same area at a previous time. In particular, the proposed technique is based on a cascade-classifier ...
متن کاملDetection of land-cover transitions by combining multidate classifiers
This paper addresses the problem of detecting land-cover transitions by analysing multitemporal remote-sensing images. In order to develop an effective system for the detection of land-cover transitions, an ensemble of non-parametric multitemporal classifiers is defined and integrated in the context of a multiple classifier system (MCS). Each multitemporal classifier is developed in the framewo...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information Fusion
دوره 3 شماره
صفحات -
تاریخ انتشار 2002